PAMPAS: Real-Valued Graphical Models for Computer Vision

نویسنده

  • Michael Isard
چکیده

Probabilistic models have been adopted for many computer vision applications, however inference in highdimensional spaces remains problematic. As the statespace of a model grows, the dependencies between the dimensions lead to an exponential growth in computation when performing inference. Many common computer vision problems naturally map onto the graphical model framework; the representation is a graph where each node contains a portion of the state-space and there is an edge between two nodes only if they are not independent conditional on the other nodes in the graph. When this graph is sparsely connected, belief propagation algorithms can turn an exponential inference computation into one which is linear in the size of the graph. However belief propagation is only applicable when the variables in the nodes are discrete-valued or jointly represented by a single multivariate Gaussian distribution, and this rules out many computer vision applications. This paper combines belief propagation with ideas from particle filtering; the resulting algorithm performs inference on graphs containing both cycles and continuousvalued latent variables with general conditional probability distributions. Such graphical models have wide applicability in the computer vision domain and we test the algorithm on example problems of low-level edge linking and locating jointed structures in clutter.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soft Histograms for Belief Propagation

Belief propagation methods are powerful tools for various problems in computer vision. While most methods assume a discrete set of labels for each node in the graphical model, there has recently been an increased interest in using real-valued labels and continuous probability density functions for such problems. We propose using channel representations (soft histograms) as a new way of moving f...

متن کامل

The ring of real-valued functions on a frame

In this paper, we define and study the notion of the real-valued functions on a frame $L$. We show that $F(L) $, consisting of all frame homomorphisms from the power set of $mathbb{R}$ to a frame $ L$, is an $f$-ring, as a generalization of all functions from a set $X$ into $mathbb R$. Also, we show that $F(L) $ is isomorphic to a sub-$f$-ring of $mathcal{R}(L)$, the ring of real-valued continu...

متن کامل

Pointfree topology version of image of real-valued continuous functions

Let $ { mathcal{R}} L$ be the ring of real-valued continuous functions on a frame $L$ as the pointfree  version of $C(X)$, the ring of all real-valued continuous functions on a topological space $X$. Since $C_c(X)$ is the largest subring of $C(X)$ whose elements have countable image, this motivates us to present the pointfree  version of $C_c(X).$The main aim of this paper is to present t...

متن کامل

Efficient belief propagation for higher-order cliques using linear constraint nodes

Belief propagation over pairwise connected Markov Random Fields has become a widely used approach, and has been successfully applied to several important computer vision problems. However, pairwise interactions are often insufficient to capture the full statistics of the problem. Higher-order interactions are sometimes required. Unfortunately, the complexity of belief propagation is exponential...

متن کامل

Linear Programming Relaxations and Belief Propagation - An Empirical Study

The problem of finding the most probable (MAP) configuration in graphical models comes up in a wide range of applications. In a general graphical model this problem is NP hard, but various approximate algorithms have been developed. Linear programming (LP) relaxations are a standard method in computer science for approximating combinatorial problems and have been used for finding the most proba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003